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Abstract6

We explore two closely related visibility problems: the maximum hidden set and the minimum7

convex cover. It is known that the convex cover number (cc(P )) for any simple polygon is greater8

than or equal to the hidden set number (hs(P )). We define a new subclass of polygons, homestead9

polygons, as those which have hs(P ) = cc(P ). We present subclasses whose members are homestead10

polygons and whose members can be homesteads or not homesteads. For histograms and spirals,11

we give linear time algorithms which find both a hidden set and a convex cover of the same size,12

improving on observations from Bajuelos et al. (2008)[2] for finding the maximum hidden set when13

restricted to vertices. We also show that in general, deciding if a polygon is a homestead polygon is14

NP-hard.15
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1 Introduction22

Across various fields and applications, polygons are used for modeling environments, molds,23

and physical objects in general and often it is more advantageous to break such a polygon24

into simpler pieces for increased efficiency of processing. There are several methods of25

decomposing polygons, but the version that motivates our work is the notion of convex cover.26

This version of decomposition first studied by Pavlidis [9] for its practical applications in27

pattern recognition. It differs from other forms of decomposition in that all the pieces must28

be convex polygons and pieces are allowed to overlap. O’Rourke and Supowit [8] showed29

that the problem of determining the minimum convex cover is NP-hard for polygons with or30

without holes, with more recent work by Abrahamsen [1] in 2021 showing that the problem31

is ∃R-complete.32

Our work focuses on how minimum convex cover is related to a visibility problem called33

maximum hidden set. Shermer [10] introduced the maximum hidden set problem and proved34

that it is NP-hard. Intuitively, a maximum hidden set in a polygon is a maximum cardinality35

set of points where no pair of points sees each other. Eidenbenz [3] subsequently showed that36

finding a maximum hidden set was APX-hard for simple polygons. Shermer [10] observed37

that the size of a maximum hidden set must be less than or equal to the size of a minimum38

convex cover, since no two hidden points could exist in the same convex piece. Shermer39

[10] also observed that hidden set is essentially the same as the graph theoretical notion of40

independent set, with hidden points being the indepdendent set of an infinite graph on all41

the points called a point visibility graph. The size of a minimum convex cover of a polygon42

is similarly equivalent to the clique cover number of the point visibility graph.43

In the graph theory setting, when the independence number and clique cover number44
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are known to be equal, they can both be found in polynomial time. This is because another45

quantity, the Lovasv number, was shown by Knuth [7] to be "sandwiched" between the46

complement problems of independence number and clique cover number. Hence, when they47

coincide, the Lovasv number is equivalent to both and can be approximated in polynomial48

time due to work by Grötschel, Lovàsz, and Schrijver [5]. While a polynomial time algorithm49

in the number of nodes of a graph does not directly give us insight into how to develop a50

polynomial time algorithm for an infinite graph, studying subclasses of polygons where they51

coincide has allowed us to develop linear time algorithms for those subclasses.52

We define the problems and concepts used for this discussion more rigorously, and53

introduce our own classification of polygon, homestead polygons.54

▶ Definition 1. [[10]] Given a polygon P , the point-visibility graph of P, PV G(P ) =55

(V, E) where V = {p | p ∈ P} and E = {(x, y) | xy ⊂ P}.56

▶ Definition 2. For a polygon P, the hidden set number of P, hs(P), is the independence57

number of PVG(P).58

▶ Definition 3. For a polygon P, the convex cover number of P, cc(P), is the minimum59

number of convex pieces needed to cover P. It is also the clique covering number of PVG(P).60

▶ Definition 4. A polygon, P is a homestead polygon if hs(P ) = cc(P ).61

2 Homestead Polygons62

2.1 Combinatorial classes63

From Shermer [10], we know that for a polygon P with r reflex vertices, the following64

inequality holds:65

1 ≤ hs(P ) ≤ cc(P ) ≤ r + 166

This implies the following two theorems and corollary:67

▶ Theorem 5. All convex polygons are homestead polygons.68

Proof. By definition, convex polygons has convex cover number 1. Hence, for convex polygon69

P, 1 ≤ hs(P ) ≤ 1, therefore hs(P ) = cc(P ) = 1. Since hs(P ) = cc(P ), we know that P is a70

homestead, thus all convex polygons are homestead polygons. ◀71

▶ Theorem 6. Any polygon P with hs(P ) = r + 1 is a homestead polygon.72

Proof. For any polygon P with hs(P ) = r + 1, from the above inequality we know that73

r + 1 ≤ cc(P ) ≤ r + 1, thus hs(P ) = cc(P ) = r + 1. Since hs(P ) = cc(P ), we know that P is74

a homestead. ◀75

▶ Corollary 7. All spiral polygons are homestead polygons.76

Proof. From Bajuelos et al [2], we know that for any spiral polygon P, hs(P ) = r + 1.77

Therefore all spiral polygons are homestead polygons. ◀78
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2.2 Spiral Polygon Algorithm79

A spiral polygon is a simple polygon formed by two chains, one composed of entirely convex80

vertices and the other of entirely reflex vertices (excluding the two end-points that connect it81

to the convex chain). From the previous discussion, we know that spiral polygons have a82

convex cover and a hidden set of size r + 1. Bajuelos et al. [2] note that a hidden set of size83

r + 1 can be obtained by simply placing a point at the midpoint of each edge along the reflex84

chain. Thus, algorithmically, finding a hidden set is extremely trivial. However, finding a85

convex cover requires a small trick to achieve linear time. See Figure 1 for a demonstration86

of this algorithm.87

We will consider a spiral polygon as a reflex chain and a convex chain. We iterate through88

the reflex chain, adding a pair of a hidden set and a convex piece to a running set of them.89

The hidden points are the aforementioned midpoints, and the convex pieces are formed by90

extending the edge that the new hidden point lies on. Since all the vertices in the reflex chain91

(except the two on the ends) are reflex, we know this extension will intersect the convex92

chain, and thus form a convex piece. We only need to extend out one way, since the very93

first edge of the reflex chain only extends one way and from there we can just extend past94

the vertex which was not part of the previous edge. This is because taking out the previous95

convex piece produces a spiral with one less reflex vertex and whose reflex chain starts with96

the edge now being considered.97

Data: P , a spiral polygon (vertices in counterclockwise order)
Result: C, a set of pairs made of a hidden point and convex piece
c0 ← the convex vertex in P which has a reflex vertex preceding it;
r ← c0.prev;
c1 ← c0 c2 ← c0 C = {};
while r is a reflex vertex do

p← ((r.x + r.prev.x)/2, (r.y + r.prev.y)/2);
while c1.next is not left of −−−−−→r, r.prev do

c1 ← c1.next

end
x← intersection of −−−−−→r, r.prev and −−−−−−−→c1, c1.next;
L← {r.prev, r, c0};
while c2 ̸= c1 do

L.add(c2);
c2 ← c2.next;

end
m← midpoint of r.prev, r;
C.add({L, m});
c0 ← x;
c2 ← c2.prev;
r ← r.prev;

end
Algorithm 1 An algorithm for finding both hs(P ) and cc(P ) in spiral polygons

To form these convex pieces using the edge extensions, we keep track of the intersection.98

We can just keep a pointer to a vertex in the convex chain and move forward through it until99

the edge corresponding to the vertex is intersected by the extension of the current reflex edge.100

From there, we simply list out the previous convex vertices, the previous intersection, the101
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reflex vertex not being extended and the new intersection to get the convex piece. Since the102

extensions are all going to intersect the convex chain in order, we can simply keep moving103

this pointer forward throughout and only incur O(n) work.104

Figure 1 Demonstrating our algorithm for spiral polygons.

2.3 Histogram Polygons105

A histogram polygon is a simple polygon formed by two chains whose x-coordinates increase106

monotonically, one of which has only one edge, and where all angles between edges of the107

polygon are orthogonal. Bajuelos et al.[2] presented a formula for a maximum hidden vertex108

set of a histogram polygon in general position given the number of "bottom sides". Counting109

these bottom sides takes O(n) time, implying a linear time algorithm. Our algorithm110

improves upon that result by finding a maximum hidden set (no vertex or position constraint)111

and a minimum convex cover in O(n). Also, Hoorfar and Bagheri[6] present an O(n) time112

algorithm for the related problem of finding minimum hidden guards in histogram polygons113

under orthogonal vision, meaning 3 of the 5 hiding problems presented by Shermer [10] can114

be solved in O(n) time for histogram polygons for at least one form of visibility.115

We will consider the histogram polygon as an ordered list of “bars” from right to left.116

Each bar is the rectangle formed under each horizontal edge until the base is reached (a117

convex piece), paired with the midpoint of its top edge (a hidden point). We can decompose118

the polygon into these bars, creating an overestimate on convex cover and hidden set. To119

lower this, we merge bars of the same height without a boundary in between, which discards120

the newer hidden point and combines the rectangles.121

Moving right to left, keep track of a set and a stack. The set will be our answer and the122

stack will keep track of all the bars which are candidates for merging. When considering a123

bar, we compare its height to the bars on the stack. If the bar is higher than the top of the124

stack or the stack is empty, we add it to the stack and the set. If the bar has equal height,125

we merge it with the top bar of the stack. If the bar has a lower height, then we pop the126

top bar off the stack and compare again. Continue until all bars have been considered and127

return the set of merged bars. See Figure 5 for an example run of the algorithm.128

The result is a linear time algorithm (using the same stack operations argument as129

the Graham scan) which solves both maximum hidden set and minimum convex cover for130

histogram polygons. Since the algorithm always returns a hidden set and convex cover of131

the same size, histogram polygons must be homestead polygons. The pseudocode is given in132

Algorithm 2133
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Data: M , a histogram polygon
Result: C, a set of pairs made of a hidden point and convex piece
p← the rightmost vertex of the base;
S ← an empty stack of pairs;
C ← and empty set of pairs;
yMin← p.y;
p← p.next;
while p.y > yMin do

q1← (p.next.x, minY ); q2← (p.x, minY );
R← [p, p.next, q1, q2]; m← ((p.next.x + p.x)/2, p.y);
pair ← [m, R];
if S is empty then S.push(pair); C.add(pair);
possibleMatch← S.pop();
while S is not empty and possibleMatch[1].y ≤ p.y do

possibleMatch← S.pop();
end
T ← possibleMatch[0];
S.push(possibleMatch);
if T [0].y = p.y then
T [1]← p.next; T [2]← q1;
If T [0].y > p.y then S.push(pair); C.add(pair);

end
return C;
Algorithm 2 An algorithm for finding both hs(M) and cc(M) for histogram polygon M

3 Nonhomestead Polygons134

We present several simple polygons for which hs(P ) < cc(P ). These polygons each have135

different136

▶ Theorem 8. There exists an orthogonal polygon which is not a homestead polygon137

Proof. Observe the example M in Figure 3. This polygon is clearly orthogonal. First we138

will show that M does not admit a hidden set larger than size 3 and then show that the139

minimum convex cover must be greater than or equal to 4 by using a theorem from graph140

theory.141

We start by finding a convex cover of size 4. We can remove out the points that are in142

the intersection of 2 or more convex pieces since their use can only admit a hidden set of size143

3 or smaller. This is because if among the two remaining convex pieces, there can only be an144

additional two points that can be hidden in them, by definition of convexity. See Figure 4,145

the regions outlined in purple are the remaining points that have not been eliminated.146

Now we show that for each purple region Ri, after taking out the strong visibility region of147

Ri, the rest of M can be covered with just 2 convex pieces. By definition of strong visibility,148

all the points in Ri see all the points in the strong visibility region. Therefore, using any149

point in Ri disqualifies usage of the strong visibility region, hence covering the rest with 2150

convex pieces means at most 2 additional hidden points can be used.151

For some of the purple regions, we split Ri into 2 regions and analyze them separately152

because the strong visibility region of the whole of Ri is just a convex piece and thus we153

needed 3 to complete that cover, but when the region is split both pieces can have the154
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Figure 2 Demonstrating our algorithm for histogram polygons.

Figure 3 Orthogonal and x-monotone polygon, M which is not a homestead polygon.

remaining portion covered with just 2. This full analysis is shown in Figure 5, with the155

specific region being analyzed in each iteration shaded in purple.156

Since, as is shown in Figure 5, including the strongly visible region of any purple region157

allows the rest of M to be covered with just 2 added convex pieces, we know that M admits158

hidden sets of size at most 3.159

For convex cover, we find an indueced subgraph of the PVG of M with clique cover160

number 4. From Gella and Artes [4], we know that for graph G and induced subgraph H,161

the following inequality holds:162

cc(G) ≥ cc(H) (1)163

Therefore, since convex cover is simply the clique cover of the point visibility graph, finding164

that clique cover number of the point visbility graph in M restricted to a small set of points165

is 4 will suffice to show that cc(M) ≥ 4.166

We show this through finding the chromatic number of an isomorphism of the complement167
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Figure 4 Showing the remaining regions of M that haven’t been ruled out by a starting convex
cover.

Figure 5 Showing the size 2 convex covers of the remaining region after taking out the strong
visibility regions of the purple regions.

graph in Figure 6. Start by observing that nodes 1,2,3 form a clique in the complement,168

thus must all have different colors, say red, blue and green respectively. Node 6 is adjacent169

to both red (1) and blue (2), it must be green. Node 5 is adjacent to green (6) and red170

(1) and thus must be blue. Node 7 is adjacent to green (3) and blue (5) so it must be red.171

Since 4 is adjacent to green (3), red (7), and blue (5), it must be a fourth color. Therefore172

the chromatic number of G′ must be 4. This in turn proves that cc(G) = 4 and in turn173

cc(P ) ≥ 4. Therefore M , an orthogonal polygon, is not a homestead.174

◀175

▶ Corollary 9. There exists an x-monotone polygon which is not a homestead polygon.176

Proof. The polygon M is also clearly x-monotone in addition to being orthogonal. Therefore,177

this corollary is true from the previous proof that M is not a homestead. ◀178
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Figure 6 Showing an induced subgraph of P V G(M) with cc(G) = 4 from chromatic number of
compliment.

3.1 General position179

Another subclass of polygon that we had conjectured was comprised only of homestead180

polygons was polygons whose vertices were in general position. A set of vertices is said to be181

in general position if no 3 vertices are collinear and no 4 vertices are said to be cocircular.182

Figure 7 A polygon W which has no three collinear vertices and is not a homestead.

▶ Theorem 10. There exists a polygon which is not a homestead polygon which has vertices183

in general position184

Proof. First we show a polygon W (in Figure 7 which is a polygon where no 3 of the vertices185

are collinear, but does have cocircular points, and is not a homestead polygon. The polygon186

exhibits rotational symmetry which allows us to simplify our analysis. First we show that187

the hidden set number of W is 2, then that its convex cover number is 3 and then give188

a modification of W ′ that does not change any of the properties which make W not a189

homestead.190

For hidden set, we analyze the green region of W as, due to rotational symmetry, it is191

equivalent to analyzing all the other regions. Each of the colored regions have nodes in their192

centers. These nodes are connected if their regions are strongly visible to each other (their193

strong visibility regions contain all of the other). Any point in the green region sees all the194

points in the red and orange regions, meaning we need to cover the blue and purple regions195

with just one convex polygon. Since blue and purple have an edge, this implies that they see196

each other, so simply taking their convex hull will produce the convex piece. Because only 1197

additional convex piece is needed after using the strong visibility region of the green region,198
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and the green region is, by rotational symmetry, equivalent to all the other regions which199

total all of W , W admits hidden sets of size at most 2.200

For convex cover, we take the convex vertices as our subgraph ("points of the star"). It is201

clear that the graph induced by these vertices is the same as that of the regions from the202

hidden set discussion, ie the convex vertex in the green region sees the vertices in the red203

and orange regions but not the blue and purple. This graph is C5, a well known graph which204

has clique cover number 3.205

Figure 8 A polygon W ′ whose vertices are not in general position and which is not a homestead
polygon.

Observing W ′ (see Figure 8), it is clear that the colored regions are related just as those206

of W . The convex vertices also are related in the same way as those of W . Therefore, W ′, a207

polygon which has vertices in general position, must have hidden set number of at most 2208

and convex convex number of at least 3 and must not be a homestead polygon.209

◀210

▶ Corollary 11. There exists a star-shaped polygon which is not a homestead polygon.211

Proof. A star shaped polygon is a polygon for which there is some point or set of points212

that see the entirety of the polygon. The center point of W is in all of the colored regions,213

therefore must see the entirety of W . Since W is ◀214

3.2 NP-hardness of Homestead Decision Problem215

We can define a decision problem with respect to homestead polygons by taking a polygon216

as an input and requiring an output of true or false indicating whether the polygon is a217

homestead polygon or not. The key component in the two NP-hardness reductions (both218

from 3-SAT, the variant of the Boolean satisfiability problem where all clauses have 3 literals)219

for hidden set and convex cover in simple polygons is the construction of a simple polygon220

which is a homestead if the 3-SAT instance is satisfiable and a nonhomestead if it is not221

satisfiable.222

▶ Theorem 12. Deciding if a simple polygon is a homestead polygon or not is NP-hard.223

Proof. It is sufficient to show that for any instance of 3-SAT, the corresponding construction224

from Shermer’s [10] NP-hardness reduction for hidden set has exactly the convex cover225

number k which, if equal to the hidden set number, indicates that the instance is satisfied.226

This is because we can simply apply any algorithm for deciding if a polygon is a homestead227
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polygon to this construction in the same way that Shermer takes the value k as input for a228

maximum hidden set decision algorithm. The full details of the construction are provided in229

Shermer’s paper.230

For a 3-SAT instance with m clauses and n variables, k = 2mn + 8n + m + 1. We show231

that there is a subgraph of every construction that has clique cover number equal to K.232

Shermer shows a set of convex pieces which cover the construction of size k, so we just need233

to prove that no cover with less pieces can exist using the subgraph argument. First we show234

the subgraph in Figure 9, with dotted edges signifying that the edge connects to a point in a235

different component. We use the same labels as in Shermer’s proof.236

Figure 9 The subgraphs in each of the shermer construction components. Top is a literal unit,
left is a consistency checker, right is a clause unit and bottom is the overall structure, indicating we
are including the corners.

Just as in the previous examples, we start by finding a large clique in the complement237

graph since the chromatic number of the complement must be at least the size of that clique.238

A clique in the complement graph is an independent set in the graph, so we will select a set239

of points identified in Figure 8 such that no two share an edge.240

For each literal unit, we take all the e points and the Pi,2 points for 0 ≤ i ≤ n, amounting241

to 2mn + 4n points. For each consistency checker, we take all the f for an additional 2n242

points. For each clause checker, we take all the q0 points for an additional m points. And243

from the overall box structure, we take c1. The total size of this clique is 2mn + 6n + m + 1,244

meaning we will have to show that an additional 2n colors are needed to color the complement245

graph.246

For a start, we can label c2, c3, c4 the same color as c1 without any issue. For each Pi,5247

in each literal unit, we can label Pi,5 with the same color. For each clause unit, q2, q3, can248



R. Browne and E. Chiu 23:11

be labeled with the same color as the q1. This leaves only the f1, f5 from each literal unit249

uncolored. The f1 can be colored the same as the P0,2 (or P0,5 if its a bottom clause unit),250

but if we colored P0,5 (P0,2 for bottom) the same as P0,2 (P0,5 for bottom), then we can’t.251

The same applies for f5, but with the complement literal units (CLUs). However, f1 and252

f5 can be colored with the same color. Therefore we need only an additional 2n colors to253

color f1 and f5. Therefore, the chromatic number of the complement of the subgraph is254

2mn + 6n + m + 1 = k255

Since the chromatic number of the complement of an induced subgraph of the PVG of256

the construction is equal to k, this means that the convex cover of the construction must be257

at least k. Since Shermer shows such a cover, this implies that the convex cover number of258

the construction is exactly k.259

Since the convex cover number of the Shermer construction I ′ for any 3-SAT instance260

I is equal to k, and the hidden set number of I ′ is strictly less than k if and only if I is261

unsatisfiable, 3-SAT reduces to deciding if a simple polygon is a homestead polygon or not.262

Thus, since 3-SAT is NP-hard, deciding if a simple polygon is a homestead polygon or not263

must also be NP-hard.264

◀265

▶ Corollary 13. Deciding if a polygon with or without holes is a homestead polygon or not is266

NP-hard.267

Proof. Since deciding if a simple polygon is a homestead polygon is NP-hard, this naturally268

implies that the more general case of a polygon with or without holes is also NP-hard. ◀269

4 Conclusion270

Polygon Subclass Homesteadness Deciding Homesteadness
Polygons with or without holes Some NP-hard

Simple polygons Some NP-hard
Star-shaped polygons Some ?
Monotone polygons Some ?

Orthogonal polygons Some ?
Histogram polygons All Always true, O(n) for values

Spiral polygons All Always true, O(n) for values
Convex polygons All Always true, O(1) for values

Table 1 Summary of results. (Note: "values" refers to finding either a maximum hidden set or
minimum convex cover)

We presented two subclasses of polygons whose members are all homestead polygons and271

for which a maximum hidden set and a minimum convex cover can be found in O(n) time.272

We also presented several subclasses for which there exists example polygons that are not273

homestead polygons. Lastly, we showed that for simple polygons, deciding if a polygon is a274

homestead polygon or not is NP-hard.275

Additionally, we would like to pose the following open problems regarding maximum276

hidden set and minimum convex cover. We suspect that cc(P ) = O(hs(P )), as all of the277

examples that we have observed have cc(P ) ≤ 3/2hs(P ). We also suspect that monotone278

mountains are homestead polygons and have a large part of the proof of this complete.279
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Finally, we believe that it is possible that finding the hidden set number and convex cover280

number when restricted to homestead polygons is no longer NP-hard and that there exists281

some value analogous to the Lovasv number which can be computed in polynomial time.282
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polygon, which means v1 cannot see v2.319

Case 2: v1.y = v2.y320

Without loss of generality, we can assume v1 was added to H before v2. Since v2 was321

added into H, we know that v1 could not have been in the stack when v2 was being processed.322

Therefore a midpoint lower than v1 must’ve been added to H after v1 was added and before323
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Figure 10 Example of Case 1 for Lemma 15.

v2 was added which popped v1 from the stack. The line segment v1v2 passes over this324

midpoint, which means v1v2 leaves the interior of the polygon, hence v1 does not see v2. ◀325

Figure 11 Example of Case 2 for Lemma 15.

Thus, since no two points in our hidden set see each other, Lemma 15 holds.326

▶ Lemma 16. Algorithm 2 produces a convex cover.327

Proof. Assume that the second elements in each pair do not comprise a convex cover, C.328

Since every element of C must be a rectangle since each vertex in each rectangle shares one329

coordinate with each of its neighbors and there are no 3 collinear points in each, we know330

that every piece of C must be convex. Therefore, according to our assumption, C must not331

be a cover.332

Case 1: A point not in P is covered333

Our algorithm considers every horizontal edge and constructs a rectangle down to the334

base. If any of these individual rectangles covers some point that is not part of the polygon,335

a vertical line through that point shows that it is not monotone, since it will have entered336

and left the polygon more than once.337

If a point is covered by a rectangle obtained from merging, then this point must lie above338

some horizontal edge in between the left and right sides of the rectangle. This would imply339

there was some edge processed between two of the rectangles in the merge that was shorter340

than both, but if this was the case, the earlier of the two individual rectangles from the341

merge would’ve been popped from the stack before processing the second one, therefore it342

would not be a candidate for merging. Therefore, our algorithm does not cover any region343

outside of M .344

Case 2: A point in P is not covered345
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Figure 12 Example of Case 1 for Lemma A.

The only other condition is that the union must cover all regions. Assume there is some346

point which is not covered by any of the individual rectangles. Since M is monotone with347

respect to the horizontal, we know that a vertical line through each point must pass through348

a horizontal edge or through one of its endpoints. This vertical line must be a subset of349

a rectangle by definition. Since the merged rectangles do not get rid of any section, there350

cannot be any points that are not covered. Therefore, Lemma 14 holds by contradiction. ◀

Figure 13 Example of Case 2 for Lemma A.

351

Since we know that Algorithm 2 produces a hidden set, H, and a convex cover, C, we352

can construct the following inequality.353

|H| ≤ hs(M) ≤ cc(M) ≤ |C|354

and since |H| = |C|, this inequality collapses giving us:355

hs(M) = cc(M) = |C|356

Thus proving our theorem, for any histogram polygon M , the hidden set number and convex357

cover number are equal, making M a homestead by definition. ◀358

B Algorithm 2 Proof of Optimality359

▶ Theorem 17. Algorithm 2 has optimal worst-case time complexity for both maximum360

hidden set and minimum convex cover.361

An algorithm has optimal worst-case time complexity if there is some lower bound on362

worst-case time complexity for that problem which the time complexity of that algorithm is363

asymptotically equivalent to.364
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▶ Lemma 18. Finding the maximum hidden set in a histogram polygon takes Ω(n) time365

complexity.366

Proof. Shermer shows that for orthogonal polygons, the size of the maximum hidden set367

can be as large as, but not exceed, (n− 2)/2[10]. His example of orthogonal staircases are368

monotone mountains, which means that this tight bound also applies to histogram polygons.369

Simply reporting (n− 2)/2 hidden points takes Θ(n) time, therefore a lower bound for any

Figure 14 Shermer’s Staircase example, n = 10.

370

algorithm that reports maximum hidden points for histogram polygons must have worst-case371

time complexity Ω(n). Thus Lemma B holds. ◀372

▶ Lemma 19. Finding the minimum convex cover in a histogram polygon takes Ω(n) time373

complexity.374

Since we know that there is at most (n− 2)/2 hidden points in a histogram polygon and that375

this is a tight bound, there must also be some histogram polygon for which at least (n− 2)/2376

convex pieces are required to cover it. This follows from the fact that hs(M) ≤ cc(M).377

Simply reporting at least (n−2)/2 convex pieces would take Ω(n) time, thus any algorithm378

that reports the minimum convex cover for histogram polygons must have worst-case time379

complexity Ω(n). Thus Lemma B holds.380

▶ Lemma 20. Algorithm 2 has O(n) worst-case time complexity.381

Proof. All operations before the while loop can be completed in O(n).382

The rotation can be done as follows: first find the two points on the base by finding383

the maximum and minimum points in the direction of monotonicity. If we don’t already384

know the direction of monotonocity, we can check this in linear time with a march around M385

to determine whether the direction of the vertical edges increases/decreases monotonically386

(allowing for one exception, the base) or if its the horizontal. If both work choose the387

horizontal. After finding these points, rotate it so that the orientation of their edge points to388

the right. Apply this rotation to all of M. This all runs in O(n) time.389

Since we already found the base, finding p is O(1) and so is instantiating the set and the390

stack. Thus the total of the first section is O(n) worst-case.391

Our outer while loop iterates over every horizontal edge in M except the base, which392

means it runs (n − 2)/2 times. All operations excluding the inner while loop are O(1),393
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Figure 15 Example of a histogram polygon after rotation.

therefore excluding the inner loop, the outer while loop contributes (n− 2)/2 ∗O(1) = O(n)394

to time complexity.395

For the inner while loop, we use the same argument as the Graham Scan. The inner396

while loop can iterate at most (n − 2)/2 − 1 times if we need to pop every pair from the397

stack when considering the last edge. However, once an element is popped from the stack398

it is either put back on by that edge, which that edge can only do to 1 element besides its399

own pair, or it is discarded. Therefore we can assign all discarded pops with the edges of400

their initial pushes and any reinsertions with the edge that reinserted it. This results in O(n)401

time complexity from the stack operations, which means across all iterations the inner loop402

contributes O(n) to time complexity.403

The total time complexity O(n) + O(n) + O(n) = O(n), therefore Lemma B holds. ◀404

Since both problems have lower bounds of Ω(n) for their worst-case time complexities and405

our algorithm runs in O(n), we know that our algorithm must be optimal, thus proving our406

final theorem:407

▶ Theorem 21. For any histogram polygon P , Algorithm 2 finds both a maximum hidden408

set and minimum convex cover in optimal (O(n)) time.409

C Aside on convex cover and clique cover410

A point which we have made but which we haven’t found anywhere else in the literature is411

that the minimum convex cover of a polygon P is the same as minimum clique cover on the412

point visibility graph. Traditionally, a convex cover of a polygon P is a set of convex shapes413

whose union is P . It differs from the convex decomposition in that overlaps are allowed.414

Clique cover is traditionally a partition of a graph into cliques. For any convex cover, we can415

assign the overlaps to one of the pieces in the overlap, which would maintain that each piece416

is a clique in the PVG and it would be a clean partition, such as in Figure 6. The PVG417

does not require cliques to be geometrically contiguous, so these remain cliques. Therefore it418

follows that convex cover and clique cover are equivalent notions.419
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Figure 16 Showing that we can assign intersections to specific cliques to be a “partition” of the
PVG, such as for the Star of David.
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